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Abstract. The Dirac equation in Kerr spacetime is s e p m e d  using therotating tetrad formalism. 
This allows solutions of the Dine equation, in flat spacetime, written in oblate and prolate 
spheroidal coordinates to be extracted. The usual MIT bag boundaty condition. -iy*nv@ = Iv 
is then found to be incompatible with a non-vanishing separated wavefunction except in the 
spheical limit. Howkver, it is shown that an alternative boundary condition exists that is 
physically motivated and allows for a non-hivial solution. 

1. Introduction 

The object of this paper is twofold. First the Dirac equation written in the rotating  tetrad^ 
formalism is separated in a Kerr metric background. Second the solutions of the ~Dirac 
equation in oblate and prolate spheroidal coordinates are extracted and the possibility of 
implementing bag-type boundary conditions is investigated. 

2. The Dirac equation in the Kek metric 

Schrodinger (1938) was the first to examine the Weyl field in the spacetime of the 
Schwarzchild metric. At a later time Brill and Wheeler (1957) continued this investigation. 
Subsequently Teukolsky (1973) and Unruh (1973) used the Newman-Penrose spinor 
technique to separate the Weyl field in Kerr spacetime. ~ However, it was left to 
Chandrasekhar (1976, 1983) to separate the full Dirac equation in Kerr spacetime, again 
using the Newman-Penrose formalism (see also Kalnis and Miller 1991). 

Unruh chose to present his results for the Weyl equation’using the more familiar rotating 
tetrad formalism. We have reworked and expanded Unruh’s presentation to separate the 
Dirac equation in Ken spacetime. Our calculation differs from Unruh’s in that the fermion 
mass is non-zero. We also display the spin connections for this representation explicitly. 
We hope that our,paper will be accessible to readers not familiar with the Newmau-Penrose 
formalism. , .  

’ 

.~ ,,  11, h . 2  

The Kerr metric‘in Boyer-Lindquist coordinates is 

A sin’ o ds’ = --drZ - do’ + -(at - a sin’? d#)’ - -(-adt + (rz + a2)d#)’ (1) A c c 
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where A = r2 + h2 - 2Mr and C = r2 +a2 cos' 8. In curved spacetime the Dirac equation 
takes the form 

(2) 
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(y"(a, - r,) + ime)Y = 0 

where the y' and spin connections rrr satisfy 

[Y". Y"l+ = 21g'" (3) 

and 

[rF,  YUI-  = a,Yy + r:,Ya (4) 

where rip is the Christoffel symbol corresponding to the particular metric used and I is the 
unit matrix in spinor space. 

An appropriate choice of the y" and r, which satisfy (3) and (4) in Kerr spacetime is 

and 

r i = - - ( y  I M  0 3 2  y (a cos 2 e- r2)+y1y22arcos8)  
2 C2 
1 4 1 1 2  

2 s  
r, = -- (yly3r  - yoy2acos8) 

r4=- -  y y asin'e - ( r2-a2cos28)+r  -y1yzcos8 ~) 
) 2Mr . 

2 C  ' Y O 3  (: 
x ( ( r 2 + a 2 ) + c a  sin 8 +A' / ' s in8(y0y 'acos8+y2y3r) )  (6) 

where y ' ( i  = 0, 1,2,3) are the usual Bjorken-Drell (Bjorken and Drell 1964) gamma 
matrices. 

In the limit a -+ 0 the gamma matrices (5 )  and  spin connections (6) reduce to those 
of Brill and Wheeler (1957) when the following substitutions are made; y 3 ,  + 
y '  -+ -if2, y 2  -+ -ip3, and y o  -+ ifo, where ffi are,Brill and Wheeler gamma matrices. 
The factor of -i comes from the opposite sign of the metric chosen by the authors. These 
substitutions correspond to a similarity transformation connecting the representations of the 
Clifford algebra. 

Substituting ( 5 )  and (6) into (2) yields an equation which is separable if the wavefunction 
is assumed to take the form 
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where p = (r + ia cos 8) and q+. q- are as yet to be determined functions of r and 8. (The 
similarity transformation connecting this solution with that of Chandtasekhar (1976, 1983) 
is given in the appendix.) The resulting set of equations can be written as 

where the uj(i = 1,2;3) aie the Pauli matrices. It is convenient to consider the separation 
of the equations in the me # 0 and m, = 0 cases individually. 

When me # 0 the two chirality eigenstates are coupled. If one assumes that 

then the following two sets of coupled ordinary differential equations result. 

harmonics. 

(9) 

where the separation spinor is^(k, -k)'. This explicitly demonstrates that the Dirac equation 
in a Kerr backgound separates in the representation of the gamma matrices given by (5). 

If me = 0 the equations for r ~ +  and 0-  decouple and can be considered independently, 
Assuming that the individual elements of the spinor separate, so that 

the me = 0 form of (8) &en separates into tyo sets of coupled equations for the r and 8 
dependent functions: 

The constants k: and -k: are the upper and lower components of the two separation two- 
spinors. However, if the two-spinors ,,* are multiplied by the constant (k: /k:)  (which can 
be absorbed into the normalization) then (13) and (14) take the same form as the massless 
limit of (10) and (1 1) with either k2 = k:k: = (k')* or kZ = k;k; = (k-), as appropriate. 
Thus if me = 0 the solutions separate into the chiral eigenstate components of the massive 
solution with me = 0 and independent separation constants k+, k- .  

In terms of the arbitrary constants Cl and CI. the solutions of the angular equation (11) 
are 

where k2 = ( I +  i), and * l / Z S l m ( 8 ,  4 )  are the mass-dependent spheroidal harmonics of spin 
one half (Chakrabarti 1984) which can be expressed as a sum of spin-weighted spherical 
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3. Oblate and prolate spheroidal coordinates 

It has already been pointed out that the Dirac equation is separable in oblate (Chandrasekhar 
1976, 1983, Cook 1982, Kalnis and Miller 1991) and prolate (Cook 1982) spheroidal 
coordinates (henceforth refered to as osc and Psc respectively). The most direct way to 
extract the solution in OSC is to take the appropriate limit of the solution in Kerr spacetime. 
It has not been mentioned before that a further simple transformation then yields the solution 
in PSC. We therefore present the two solutions below. 

B H J McKellar ef a1 

The spatial metric in osc ( q ,  e,$)  is 

g,,, = gee = a2(coshz q - sin2@) g++ = a2(cosh q sin8)' (17) 
while the spatial metric in Psc (q', e', 4') is 

g,,,, = gss. = a2(sinhz q'+ sinz@') g+,F = a'(sinhq'sin0) , 2  . (18) 

where 0 -= q. q' 

then the metrics become 

CO, 0 < 8,B' i K and 0 < #, #' < In. 
If the substitutions, r = a sinh q and r' = a cosh q' are made in (17) and (18) respectively 

go8 =-E+ g4+ = -A+sin28 (19) 
E+ 

g,, = -;. 

g,,< = -- ge,sl = -E- g4,& = -A-sin20 (20) 

and 
E- 
A- 

where AA = (r2 31 a2) and E* = (r2 & a2cos28), while 0 < r < m and a < r' < m. 
If alternatively the substitutions r = -a sinh q and r' = -a cosh q are made, then the 
metric transforms in the same way but the domains of r and r' becomes negative. In the 
limit a + 0 one expects to find the metric in the spherical polar coordinates, thus the 
transformation without the minus signs is the case of physical interest. Comparison with 
(1) reveals that the Kerr metric reduces to the osc metric in the limit (M + 0). It follows 
then, that by taking the limit M + 0, all the equations of the previous section will apply 
to the Dirac equation in osc. 

Given the expressions describing the Dirac equation in OSC one can recover the 
appropriate results in PSC by the fucher transformation a + kia  since this substitution 
transforms the metrics (19) and (20) into one another. It is also important to redefine the 
domain of r appropriately. Thus the plus and minus signs in the transformation give rise to 
two different representations o f  the gamma matrices (an analogous pair of representations 
exist in osc). For simplicity we shall henceforth only consider the transformation involving 
the positive sign. 

There exists an interesting symmetry between the radial and angular equations for 
the Dirac equation in both osc. and Psc. If-the substitution acose = ir such that 
sin0 = i $ ( r 2  + is made in the angular equations in OSC then the resulting system 
of equations is identical to the radial equation in OSc when the further substitutions 
((S2 = R2,iSl = RI)  or (-is2 = R2,Sl = RI)) and ((S2 = -Rz,iS) = RI)  or 
(-iSz = Rz, SI = --RI)) are made corresponding to the plus and minus square root 
respectively. Similarly if the substitution acosB = r such thit sin0 = k$i(rz - a2)1/2 
is made in the angular equations in PSC then the resulting system of equations is identical 
to the radial equations in PSC when the aforementioned substitutions are made. A similar 
symmetry exists between the radial and angular parts of the spheroidal wavefunction (see 
Abramowitz and Stegun 1964). 
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4. The oblate and prolate spheroidal bags 

The MIT bag model of quark confinement is often employed in a variety of different 
calculations. In most cases the bag boundary is assumed to be a static.sphere,, it would be 
useful to extend-this model by considering non-spherical boundaries. A spheroidal boundary 
would be a convenient choice because it can be parametrized by two constants 'a'and 'ro' 
which constitute, respectively, a measure of the deviation from spherical symmetry and a 
generalized radius. 

It is then natufal to attempt to implement the bag boundary condition on the solutions of 
the Dirac equation in osc and Psc. The quark field in the bag model satisfies .the boundary 
condition 

where np is the unit vector in the outward normal direction. For the spheroidal surface 
r = ro 

Substitution of (7), (12) and (22) into (21) yields~the following two equations (applicable 
to massive fermions) 

The system of equations (23) has the unique solution, Rl(i-0) = R2(r0) = 0, but this is 
a fixed point of the system of differential equations (13) and thus the wavefunction must 
vanish everywhere. It is only in the spherical limit that the equations are consistent and 
that a non-trivial separable solution can be sought. 

In the limit a -+ 0 the pairs of differential equations (10) and (1 1) can be solved, yielding 
the solution of the Dirac equation with a rotating tetrad in spherical polar coordinates. The 
radial solutions are 

and 

where A0 is an arbitrary constant and K' = m2 - m:. Substitution of (24) and (25) into (23) 
with p** = pi yields the usual expression derived from the solution of the Dirac equation 
with a fixed tetrad in polar coordinates 

In  the massless limit the two helicity eigenstates can be considered separately, the 
resulting systems of coupled equations again require the wavefunction to vanish. It is only 
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in the spherical limit that two helicity eigenstates (with the same separation constants) can 
be combined together to give a non-trivial solution which satisfies the boundary condition. 

It follows that these separated solutions to Dirac's equation cannot be confined within a 
static spheroidal MIT bag. This somewhat surprising result has been noted elsewhere (Kalnis 
and Miller 1991) and can be readily confirmed via Chandrasekhar's solution. However, this 
result does not obviously exclude the possibility that a linear combination of solutions 
exists, such that the boundary condition is implementable (see for example Hahn et a1 
1983). Instead of pursuing this alternative, we investigate the possibility that a bag-like 
solution can be constructed using some generalization of the usual MIT condition (21). 

From a strictly mathematical point of view, it is possible to show that more general 
types of boundary conditions than (21) can be consistently introduced. The requirement 
that the adjoint Dirac operator be properly defined as a differential operator implies that the 
boundary condition must take the form 

B H J McKellar et a1 

f iy"n,XY = Y (27) 

where X satisfies XtX = 1 and y%,X = Xty'n, (Luckock 1991). For an arbitrary 
boundary the most general form possible is 

- ie-'8ySyfin,Y = Y ,(28) 

where ,!3 is some arbitrary function of the coordinates on the boundary. (We have chosen 
the sign so as to agree with the parity of the usual MIT condition.) Interestingly, if we 
choose the function p to be 

p = tan-'(acose/r) (29) 

then the following sensible eigenvalue problem results from substituting the separated 
solution (7) into (27) 

In effect, the chiral phase p cancels the unwanted 0-dependent factors in (23) since 
p = /ple'l. Thus, it is possible to impose consistent bag-like boundary condition (28) 
and (29), on the separated solution (7), over a spheroidal surface. 

What then, is the physical content of (28) and (29)? The usual MIT boundary condition 
(21) is sufficient to ensure that both the outward current ian ,yW and the density GY 
vanish on the boundary. In the case of the generalized condition (28), the current vanishes 
but GY does not. In its place, the following expression is fixed to zero on the surface 

From the definition of the current, the form of the solution (7), and the equation of motion 
(lo), it is easy to show that the current in the r direction always vanishes within the bag. 
Thus (28) and (29) provide a sensible boundary condition for modelling hadrons since they 
ensure that the cnrrent is continuous at the boundary. Recall that it is the current, rather 
than GY, that carries unambiguous physical significance. Having also noticed that the MIT 
boundary condition (21) cannot be implemented with separated solutions in osc, Kalnis and 
Miller (1991) have proposed the alternative condition 
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This suffers from two drawbacks. First, in general it fails to satisfy Luckock’s condition 
y@n,X = X t y p n ,  and becomes inconsistent for i n  arbitrarily shaped bag boundary. 
Second, even if the boundary i s  consIsained. so that (32) is self-consistent, the current 
through the boundary becomes non-zero although the density GW does vanish. Since this. 
introduces a discontinuity in the current, it &,tempting to speculate that (32) implies the 
presense of a scalar plus electrostatic potential at the boundary-the current at the boundary 
might then be explained via the Klien paradox due to the electrostatic component of the 

It is possible to provide a physical motivation- for (28) along lines similar to case 
argud by Chodos er a1 (1974) in their original development of the MIT model: Consider a 
combination of scalar and pseudoscalar potentials that~can be written as 

potential. In any case we shall not consider this possibility further. . 

= 

V, + iy5 V, = Ve’pY’ 

(iywa, - veiflys)q = 0. ~ , 

’ . ’  (33) 

(34) 
(For simplicity we have taken m = 0 since a non-zero m can always be absorbed into V, 
but as we are going to take V -+ 00 anyway, it will become irrelevant.) Now consider 

(35) 
From the Dirac’equation for W the first term on the right vanishes. The remaining term 
can be taken to be finite as V -+ 00, so in the limit of large V, e@y’% satisfies the usual 
Dirac equation in a (large) scalar potential. Following the argument of Chodos et al (1974), 
we can derive the boundary condition 

in an obvious notation. The Dirac equation in this potential is then 
~~ 

(iywa, - v)&Pv’y = e-i8~5/2(iy~a, - veibv5)y + +e-~B~5/~yvy~(a ,p)q ,  

ei8y’12q = -iyfin,ei8~s12q, (36) 
which is equivalent to (28). In the above argument the function ,B i s  arbitrary, and no 
justification for the specific choice (29) has been advanced. At lest ,however, it provides 
a motivation for considering angle-dependent-type boundary con&iops which, given the 
choice (29), allow a’ non-trivial eigenvalue problem to be extractgg from the separated 
solutions. 

Finally it is interesting to note that’the functions sing and sosg which appear in (31) 
are related to solutions of Laplace’s equation (Birse 1992). Indeed, the general solution of 
0% = 0 in spheroidal coordinates is 

This tantalizing result may be a hint of the physics’ that underlies the clearly useful, but 
only partially explained, boundary conditions ,(28)-(29). 

5. Conclusion 

We have presented a separation of Dirac’s equation in Kerr spacetime and used the result to 
study the Dirac equation in oblate and prolate spheroidal coordinates. It was found that the 
usual MIT bag boundary condition is incompatible with a non&ivial sepGated solution- 
except in the spherical limit. A new boundary condition (28) has been’proposed which, for 
an appropriate choice of e ,  results in a sensible eigenvalue problem. Furthermore, it has 
been shown that a chirally rotated boundary condition of the form (28) can arise naturally in 
scalar-pseudoscalar potential models. Thus we have demonstrated that the new boundary 
conditions (28)-(29) have a: practical and, to some extent physical, motivation. Clearly 
though, more work will be required before this curious result is fully understood. 
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Appendix 

In thk ,appen,dix we relate Chandrasekhar's (1976; 1983) solution of the Dirac equation in 
a. Ken background to the 0ne:developed here. We shall adopt the notation and equation 
enumeration of Chandrasekhar (1983) (chapter 10). 

Chandrasekhar's equation (109) can be rewritten in the usual Dirac equation form only 
,ifthe mass is rescaled so that 

. 
~~ 

~. 

p* = 2-'/'me (A.1) 

Once this is done the gamma matrices in Chandrasekhar's representation, y& can be 
extracted; 

where 

While the corresponding wavefunction takes the form 

WCH = (FI, Fz, -G2, -(%IT. 64.3) 

These gamma matrices and the wavefunction differ non-trivially from those proposed by 
Iyer and Kummar (1978). 1t.k straightforward to see that their proposed representation is 
flawed because their gamma matrices fail to satisfy (3). 

It is possible to verify that the two solutions, and the associated representations of the 
gamma matrices, are related by the similarity transformation 

SWCH = and SycHS-' = y" (A.4) 

where 

and 
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